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Relative CeO2orientation depends deposition temperature

High temperature growth:
Crystallographic tilt towards ⊥
Tilt increases monotonically with miscut

Low temperature growth:
Small, ~biased tilts



MicrobeamMicrobeam enables combinatorial enables combinatorial 
measurements on real samplesmeasurements on real samples
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Important questions remain 

• Why does Jc decrease for 
thick samples?

• Why does mosaic on single Ni 
substrate grain differ 
dramatically between 
samples?

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.



How grain boundary/polycrystal networks 
interact - a major materials opportunity 21st 

century 
• What are the constitutive equations at grain 

boundaries?
– How do they change with boundary type

• What are ideal microstructures?
– How do different networks evolve during processing 

and in service?

• How can grain boundary distributions be 
controlled?

– Grain boundary engineering

Essential for nanophase and advanced layered materials



Unprecedented precision addresses long-
standing issues/ tests CSL models

• CSL low-energy boundaries share 
lattice sites

– Σ denotes inverse fraction of 
shared sites

– Theory: misorientation
increases as Σ decreases

• Measured misorientation increase 
with Σ

• Grain boundary normals
– Ideal directions should have 

lower energy
– Faceting may remove energy 

advantage

Morphology of Ni triple junction

UVW
Misorientation: rotation of θ angle 
about a common axis UVW

Lattice 1Lattice 2

θ



Significant statistical information emerging 

Twist2.40.28, 0.31, 1.00 
/0.36, 0.37, 1.00

0.031, 1, 10.0160.00Σ3A314

Tilt86.41.00, 0.11, 0.02 / 
0.32, 1.00, 0.87

0.021, 1, 10.0160.00Σ3A57

Tilt88.30.00, 1.00, 0.17 / 
0.04, 0.27, 1.00

(6.16°)Σ1B34

57.60.08, 1.00, 0.26 
/1.00, 0.12, 0.68

4.551, 1, 10.1450.57Σ37cB10

Tilt74.61.00, 0.07, 0.53 
/1.00, 0.87, 0.31

6.113, 2, 00.8043.66Σ47bB6

Tilt86.31.00, 0.32, 0.30 / 
0.69, 1.00, 0.17

2.952, 1, 10.0144.40Σ21bB2
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About 50% are CSLs, and 20% are found to be tilt, twist 
or having low-index in both grains.

Open questions:
1. Why and how are the 

deviations from ideal CSL 
model as Σ type increases? 

2. Are there residual strains 
imposed near the deviated 
CSL boundaries?

3. Any difference of CSLs
between near or below 
sample surface?

4.  …………
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Three Dimensional Morphology of Triple Junction

Misorientaion angles:
A-B: 16.572°

B-C: 12.907°

C-A: 5.538°
surface step 

between 
two grains
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QuickTime™ and a
Video decompressor

are needed to see this picture.

Polycrystalline grain structure can now be measured 
nondestructively in 3D-submicron resolution-meso scale 



Thermal Grain Growth in Hot-Rolled Aluminum
1 µm pixels,    Boundaries: 5° &  20°

5 µm Anneal 350ºC,  1 hr

Anneal 355ºC,  1 hr

Anneal 360ºC,  1 hr

Anneal 250ºC,  1 hr

• GB motions include both high-angle and low-angle boundaries
• Complete and detailed 3D evolution needed for validation of theories. 



Elastic strain key driving force-
Monochromatic DAXM measures intra-

granular elastic strain
• Local strain-even in single crystal
• Ultra-high precision local orientations 
• Independent of grain orientation
• Phase sensitive

Revolutionizes ability to study materials



5.1x1010/cm2

40 µm

Dislocation Density Map

Nanoindent in single crystals provides major insights
into 3D deformation/modeling

•

<112><111>

<110>

• Deformation boundary conditions 
completely known/ volume modelable

• Best models predict some features not 
others-highly reproducible

• Single, bi-crystal, or polycrystal

• Strain-gradient models directly testable

Indent
Tip
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Probe Geometry

Lattice Rotation Map
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100 mN Indent Force
69 µm Indent Radius



In-situ tensile deformation polycrystal finds 
intra-granular variations

• Dramatic changes in deformations within 
single grain

– Consistently large rotations near surface

• Plastic and elastic deformation measured
– Essential information for understanding 

mechanisms

• Extensive sample characterization required 
for full boundary conditions
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Low energy twin 
boundary

Proposed research

• Full boundary conditions
• Low deformation
• Integrate theory

Tensile deformed poly-Ni



Multiplexed 3D polychromatic diffraction-center for 
mesoscale research-

-BM  
-Operated by APS
-Greater general user access

Spatial resolution 50nm→10nm

Accelerated 3D characterization 100-1000x
- Multiple wire/coded aperture
- Faster detectors (GE detectors)

Optical Table
6 axes translation

stages

Shutter

Piezo stageCCD
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box
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Optics
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Micro mono

To achieve potential and meet emerging demand -
new microbeam lines and hardware proposed



• Cannot meet demand with 
existing facilities

• Addresses long-standing issues 
with fundamentally new 
approach

• Wide applicability

Summary: - important emerging  
technique 



Team of ORNL scientists involved
• Gene Ice- Co-principle investigator, x-ray optics
• Bennett Larson- Co-principle investigator-3D 

deformation/nanoindentation
• John Budai-Epitaxial films and 3D grain growth
• Jonathan Tischler-Mesoscale measurements and 

computer analysis (CMSD - APS Site)
• Wenge Yang-Mesoscale deformation using 

nanoindentation (Guest Scientist- APS Site)
• Wenjun Liu-Grain boundary networks (Post Doc-

APS Site)
• Judy Pang-in-situ 3D polycrystalline deformation

Important support from APS-differentially 
deposited elliptical mirrors and beam 
stabilization


